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SPECTRAL SATELLITE IMAGE ANALYSIS
FOR CROP CLASSIFICATION

ABSTRACT
Assessing crop yields and ensuring food security is crucial as the global population continues to
grow. However, accurate estimation remains a challenge due to limited available data. To address
this issue, agricultural monitoring techniques have been developed, leveraging remote sensing data
from satellites and machine learning.

Traditional crop classification models often focus on either spatial or temporal data. This research
introduces a deep learning model designed to harness information from both spatial and temporal
domains. Throughout the project, investigations will be conducted to determine optimal image
preprocessing techniques, employ data augmentation methods, and identify the most influential
spectral bands and vegetation indices for the model’s performance.

Moreover, this study explores the impact of varying time series lengths in the dataset. Conventional
crop classification techniques rely on year-long datasets for crop type classification, which may
not align with estimating potential crop yield as the harvest would have already occurred. This
research aims to analyse how prediction accuracy varies at different stages of the crop growth cycle,
addressing a critical aspect of agricultural monitoring.
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1 INTRODUCTION
Pressure on agriculture grows with the increasing global population along with rising rates of
consumption. To meet this demand, both small and large scale farms must increase the productivity
in order to ensure food security for the world. However, the quantities of crops being grown have been
degrading land, water, biodiversity and climate on a global scale[1]. Causes of these issues could
be caused by poor agricultural practices, such as intensive irrigation that causes water to infiltrate
the upper levels of soil and leach the nutrients deeper into the ground while also drowning any
organisms living there[2]. Knowledge of the field extent, crop type and distribution across farmland
is important for managing the agricultural expansion in a sustainable manner[3] but this process
requires regular agricultural monitoring. Such monitoring can be used to estimate the crop yield,
map the land use of the crops or calculate the green house emissions emitted from the farmland,
which can also be used to manage the subsidies paid to the farmers[4].

The Common Agricultural Policy (CAP) in the EU requires farmers to farmers to submit an
application detailing the precise details of the agricultural parcels along with the crop type for the
farmers to receive financial support. These applications must be submitted accurately and early in
the year otherwise, the member state must return part of the subsidy received by the EU[5]. This
data is verified using a team of photo interpreters, which would be time consuming, so there is
a need to utilise an automated crop classification system. Furthermore, farmers can use the crop
detection images to monitor their farmland. A visual inspection of a farm can provide a limited view
of the farm, but information such as the crop stress or moisture levels of inaccessible areas of a
crop can also be assessed. These tools can also be used on smaller subsistence farms around the
world. There are 1.5 billion people relying on subsistence farms around the world who have limited
access to knowledge, assets, credit, markets, and risk management that can come from larger-scale
agricultural enterprises [6], so being able to automate the process of crop classification will allow
access to data on the food security in regions where limited data is collected. Furthermore, if smaller
businesses do not have access to these tools, the inequalities between small and commercial farms
will be exacerbated and therefore increases the difficulty of food security.

1.1 Project Description
Crop classification is the process of identifying and categorizing different types of crops or vegetation
in a specific area based on remote sensing data obtained from sources like satellite imagery or aerial
photography. Remote sensing involves the use of sensors to capture information about the Earth’s
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surface by analyzing reflected electromagnetic radiation, resulting in the generation of images [7].
It has diverse applications in fields such as environmental monitoring, weather forecasting, urban
planning, and, in the context of this study, agricultural and crop management. Through remote
sensing data, farmers gain insights into various aspects of their farm areas, including moisture levels,
disease outbreaks, and damage assessment [8].

Remote sensing equipment is capable of collecting data across the entire electromagnetic spectrum.
In this study, Sentinel-2 remote sensing data was utilised, encompassing information from 13 spectral
bands [9]. Sentinel-2 employs a passive sensor to detect electromagnetic waves originating from the
sun and reflected by the Earth’s surface. Notably, the waves absorbed and reflected by vegetation
carry unique signatures for each plant species [10], enabling the creation of spectral fingerprints that
characterise unknown vegetation types.

Fig. 1. Spectral signature of different types of vegetation

Figure 1 [11] presents a collection of spectral fingerprints for various plant types, spanning
wavelengths from visible light to infrared. This figure also highlights the specific wavelength ranges
influenced by factors like chlorophyll, cell structure, and water content. These details provide valuable
guidance on selecting the most suitable spectral bands for classification purposes. Considering
factors such as cloud cover and moisture variations in vegetation, the optimal spectral region
for crop classification lies within the visible and near-infrared range. The dataset utilised in this
project comprises remote sensing data sourced from Sentinel-2 [12], encompassing the region of
Brandenburg, Germany. This dataset encompasses an array of labeled crop regions, exceeding 2500
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in number, spanning nine distinct crop types and spanning the timeframe between 2018 to 2019.
Leveraging this dataset, the project aims to employ deep learning methodologies to facilitate crop
classification via computer vision techniques. Computer vision, a subfield of artificial intelligence, is
devoted to empowering computers with the capability to interpret and comprehend visual information.
Within the realm of deep learning, there exist three fundamental categories: supervised learning,
unsupervised learning, and semi-supervised learning. For the purposes of this project, a supervised
learning approach will be adopted, capitalising on the labeled data provided within the dataset to
train and refine the model for accurate crop classification. Using deep learning, this paper will utilise
mutliclass and binary classification techniques for crop classification.

1.2 Research Aims
The primary objective of this project is to develop a robust deep learning model for crop classification,
utilising the provided dataset. This study is centered on constructing a model with the capacity
to analyse data in both spatial and temporal dimensions, employing supervised deep learning
techniques. Additionally, the model will be subjected to training on time series data of varying
lengths to assess its effectiveness in accurately classifying crops throughout their growth cycles.

1.3 Research Objectives
(1) Conduct a comprehensive review of the existing literature to gain insights into the latest

advancements and achievements in the application of deep learning for agricultural monitoring.
(2) Develop an initial project proposal outlining your approach and strategies for building a crop

classification model.
(3) Learn how to create deep learning models using Pytorch and Python.
(4) Preprocess the images in the dataset to apply image augmentation and transformations
(5) Implement the proposed crop classification for multiclass classification
(6) Evaluate and iterate on the model to achieve optimal results
(7) Implement the proposed crop classification for binary classification
(8) Produce results through experimentation on varying lengths of time series data
(9) Evaluate the results of the experiment
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2 BACKGROUND
2.1 Remote Sensing
Remote sensing is a technique using sensors on airborne or satellites to collect information over
an area or object by providing data about the objects at the Earth surface or atmosphere based on
the radiation reflected or emitted from objects or areas in multiscale and multitemporal approaches
[13]. Remote sensing can be categorised into two groups, active remote sensing and passive remote
sensing. An active sensing system uses its own source of energy, which is directed at the area or
object, to measure the return signal. An example of this would be RADAR or LIDAR. An example
of satellite using an active remote sensor would be Sentinel-1 [14] which uses a Synthetic Aperture
Radar (SAR) [15]. On the other hand, passive remote sensing utilises sensors that detect reflected or
emitted electromagnetic radiation from external sources such as the sun. Most passive systems used
by remote sensing applications operate in the visible, infrared, thermal infrared, and microwave
portions of the electromagnetic spectrum [16]. However most of the wavelengths that utilise passive
sensors detect cannot penetrate dense cloud cover thus limiting its effectiveness in areas like the
tropics where dense cloud cover is frequent.

Fig. 2. Passive and Active remote sensing

Electromagnetic radiation manifests as waves that propagate through the atmosphere and the
vacuum of space, encompassing a broad spectrum of wavelengths and frequencies. These char-
acteristics define the diverse forms of electromagnetic radiation. At one end of the spectrum, we
encounter shorter wavelengths with high frequencies, including ultraviolet, x-rays, and gamma rays.
Conversely, longer wavelengths characterise the other end, housing radio waves, microwaves, and
infrared radiation. In the middle of this spectrum resides visible light, perceptible to the human eye
without the need for special instrumentation.

While visible light is within the realm of human perception, the detection of other electromagnetic
wave types necessitates specialised instruments, such as remote sensors. These sensors are engineered
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to capture data across the entire electromagnetic spectrum. The advantage of having access to this
extensive range of wavelengths lies in the varying interactions of these waves with objects on the
Earth’s surface and atmospheric conditions. Some examples of this can be seen in Figure 3.

Fig. 3. Reflectance of light of spectral signatures of Earth features

For instance, certain wavelengths are more prone to reflectance off surfaces, while others are readily
absorbed. This distinct behavior across the spectrum allows for a comprehensive understanding of
our surroundings. Notably, atmospheric factors, like water vapor, can obstruct the transmission of
visible wavelengths. However, microwaves, with their higher frequencies and lower wavelength,
can effectively penetrate through cloud cover [17], enabling remote sensing instruments to collect
valuable data even under adverse weather conditions. This adaptability and versatility in wavelength
selection empower remote sensing technologies to provide crucial insights into our environment and
facilitate a wide range of applications, from weather forecasting to agriculture and environmental
monitoring.

In this research paper, remote sensing data is sourced from two key satellites, Sentinel-2A and
Sentinel-2B, which are integral components of the Copernicus Programme [18]. These two satellites
are strategically positioned in Earth’s orbit, phased at 180 degrees apart from each other. This orbital

5



arrangement ensures that, at any given moment, one of the satellites will be located on the opposite
side of the Earth compared to the other.

Each of these Sentinel satellites has a revisit time of 10 days[12], signifying the frequency
with which they pass over and collect data from specific regions on Earth. However, the unique
characteristic of these satellites being situated on the same orbital path but phased 180 degrees apart
holds a distinct advantage. This arrangement effectively reduces the revisit time for specific areas to
5 days. This allows for any region on Earth larger than 100km2 being reimaged at least once every 5
days.

Fig. 4. Sentinel-2 Spectral Bands

Each Sentinel-2 satellite carries a high resolution multispectral imaging instrument called the
MultiSpectral Instrument (MSI) [19] which is able to sample across 13 spectral bands ranging from
visual to infrared at varying spatial resolutions as shown in Figure 4 [20]. Figure 4 shows spatial
resolutions ranging from 10m per pixel for bands in the visible wavelength to up to 60m per pixel.

2.2 Vegetation Indices
Due to the spatial resolution of the available spectral bands in Sentinel-2 identifying crop types
based purely on spatial features in the visible range is not possible. With a resolution of 10m per
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pixel, large areas of crops will appear as the average colour over the 10m2 area. As a result, a number
of techniques will have to be applied to extract more information such as with the use of vegetation
indices. A vegetation index is a value obtained from a mathematical formula derived from remote
sensing data, typically obtained from satellites or aerial imagery, to assess the health, density, and
vitality of vegetation in a specific area.

The vegetation index uses the reflectance of two or more spectral bands collected from remote
sensing to enhance various attributes of the vegetation, such as its structural, biochemical and
plant physiological / plant stress. Biomass of green leaf, fractional cover, leaf area index (LAI) and
photosynthetically absorbed active radiations are some of the examples which can be included in
structural properties. Biochemical properties includes pigments (Chlorophyll, Anthocyanin, and
Carotenoids), water content, nitrogen rich components, structural material like lignin and cellulose
etc. Change in chlorophyll content, state of xanthophyll, moisture content are refers to plant stress
[21].

Many researchers have developed vegetation indices, for determining vegetation cover and
biochemical properties by using spectral data, which commonly are a linear combination of
reflectance received in RED region and Near Infrared region (NIR) [21]. This paper utilises a number
of vegetation indices such as the Normalised Difference Vegetation Index (NDVI) and the Enhanced
Normalised Vegetation Index (ENDVI). NDVI is a widely used vegetation index can can be seen in
Equation 1.

𝑁𝐷𝑉 𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑) (1)

Where NIR is near infrared and Red is red reflectance. The wavelength for NIR is between 700
and 1400µm and the wavelength of Red is between 625 and 700µm. The equation calculates the
ratio of the two wavelengths for every pixel and returns a value between -1 and +1 with the higher
values representing areas with live, green vegetation or areas with barren rock, sand or snow for
NDVI values below 0.1[5]. An example of an NDVI image can be seen in Figure 8. In addition
to extracted spatial information by utilising NDVI, information can be extracted in the temporal
domain. A NDVI curve can be extracted by plotting the NDVI of a crop type over time to produce
a unique spectral fingerprint, as the plant starts from early growth to harvest, that can be used to
identify unlabelled crops by comparing the characteristics of the curves with other similar NDVI
curves. The figure below demonstrates the variations in the NDVI curves and how features of the
curve can be used to discern the crop type [22] in Figure 5.

In Figure 5, we can observe the Normalised Difference Vegetation Index (NDVI) for meadows
and wheat, depicted by the orange and blue lines, respectively, plotted over the course of a year. This
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Fig. 5. NDVI Graph

graph reveals distinctive patterns in the spectral fingerprint of these two crop types, allowing for
their differentiation based on their NDVI characteristics. NDVI is just one of a number of many
commonly used vegetation indices which each contribute to finding characteristics of remote sensing
data that might be unique to specific a vegetation index. Another example of this would be the
Enhanced Normalised Difference Vegetation Index (ENDVI) which is an iteration of NDVI designed
to address some of its original limitations, such as its sensitivity to atmospheric conditions and
background soil reflectance, which has found application in agricultural monitoring[23, 24].

𝐸𝑁𝐷𝑉 𝐼 = 𝐺 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 +𝐶1 ∗ 𝑅𝑒𝑑 −𝐶2 ∗ 𝐵𝑙𝑢𝑒 + 𝐿) (2)

𝐸𝑁𝐷𝑉 𝐼 = 2.5 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 6 ∗ 𝑅𝑒𝑑 − 7.5 ∗ 𝐵𝑙𝑢𝑒 + 1) (3)

Equation 2 displays the ENDVI equation where G, C1, C2 and L are constants which depend of
the remote sensor. The formula shown in Equation 3 contains the constants required for ENDVI
output from the Sentinel-2 remote sensor.
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2.3 Deep Learning
Deep learning is a subsection of machine learning that involves training artificial neural networks
to perform tasks by simulating aspects similar to human brain. Deep learning models consists of
multiple layers of nodes that process and transforms data. Due to the capabilities of deep learning, it
has gained a large interest in recent years and is widely applied in various application areas like
healthcare, visual recognition, text analytics, cybersecurity and more[25]. A deep learning model
typically follows the same processing steps as a conventional machine learning model, which consists
of preprocessing steps, such as preprocessing, deep learning model building and then training,
validation and testing. However, the primary difference of deep learning from other machine learning
modelling is in the feature extraction stage as it is largely automated in deep learning.

When using a deep learning model there are some key features and dependencies that must
be considered, for example, deep learning’s dependency on data. Compared to standard machine
learning algorithms, the deep learning model is typically dependant on a large amount of data to build
a data-driven model for a particular problem domain. Deep learning models tend to perform poorly
when the data volume is small [26], as a result, deep learning models tend to have large computational
costs while training models models with large datasets and is dependant on high-performance
machines with GPUs than standard machine learning methods [27].

Fig. 6. Deep Learning performance Comparison

One of the primary differences between deep learning and regular machine learning is how the
performance of the models increase with a larger dataset as shown in Figure 6 which demonstrates
deep learning’s ability to increase in performance when the amount of data grows exponentially.
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2.3.1 Dimensionality
When constructing a deep learning model, several critical factors, including dimensionality, demand
careful consideration. Dimensionality, in this context, refers to the quantity of features or attributes
present in the input data, and effectively managing dimensionality holds utmost importance. It
directly influences the model’s complexity, computational requirements, and the quality of outcomes.
A key concern that arises is the Curse of Dimensionality, which presents that as the number of
dimensions in a dataset increases, the task of analysing the data becomes progressively more
challenging. This challenge arises because, in high-dimensional spaces, data points tend to be
sparsely distributed, rendering the identification of meaningful patterns or relationships between
features an arduous task.

In the specific context of this paper’s dataset, the data encompasses 13 spectral bands or dimensions
for each image, resulting in 72 data points throughout the year. This high dimensionality is likely
to lead to suboptimal performance. To address this issue, a range of techniques can be employed
to reduce the dataset’s dimensions. For instance, feature selection involves carefully choosing a
subset of data that retains the most pertinent information while discarding less distinctive attributes.
Notably, selecting a more compact dataset not only mitigates dimensionality-related challenges but
also lowers computational overhead.

3 RELATED WORK
Due to the importance of crop classification, for yield prediction and food security estimations, many
techniques have been developed in the past to achieve this goal. However, due to computational
limitations earlier attempts have been restricted to how the data is utilised such as using feature
extraction from time series [28] such as in Figure 7.

Fig. 7. Time Series Feature Extraction

Reducing the dataset into a time series can indeed be advantageous in terms of dimensionality
reduction and computational efficiency. However, this transformation comes with trade-offs, primarily
the loss of spatial features and, in some cases, certain temporal features. This reduction in data
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can potentially lead to issues like underfitting, as the model may lack the necessary information to
capture meaningful patterns adequately.

To address these challenges and enhance the model’s performance in crop classification, several
vegetation indices are commonly incorporated into the dataset, as demonstrated in the referenced
study [28]. These vegetation indices, including NDVI (Normalised Difference Vegetation Index),
NDWI (Normalised Difference Water Index), BI (Brightness Index), IRECI (Integrated Ratio-based
Evaluation of Crop Indices), and EVI (Enhanced Vegetation Index), are integrated into the time
series data. These indices offer valuable information about vegetation health, density, and stress
levels over time, compensating for the loss of spatial details.

By including these vegetation indices, the time series data is enriched with additional features,
providing the model with more comprehensive information for crop classification. This augmentation
helps mitigate the risk of underfitting and contributes to more accurate and robust classification
results.

With the recent improvements in deep learning [29], improvements to the techniques used for
crop classification through the usage of deep learning [22]. In this techniques such as Convolutional
Neural Networks [30] and Recurrent neural networks such as LSTMs [31]. In some studies [32],
both CNN and RNNs are used to leverage both the spatial and temporal domain which was found
to produce the most accurate results. A common limiting factor across these studies were mostly
with the datasets. To produce a data, publicly available data is required from satellites such as
Sentinel-2 which is limited by the spatial resolution which also needs to be paired with labels. The
first limitation comes from the limited numbers of labelled crop areas as the information needs to be
obtained from government surveys and be manually assigned to field areas. Furthermore, due to the
limitations of publicly available remote sensing data, many other factors affect the data, ranging
from limited resolution to cloud obfuscation. Some studies have found an alternative method to
address this by combining data from multiple satellites, such as Sentinel-1 and Sentinel-2 in the
Plant Fusion dataset, to obtain declouded data [22].

4 METHODOLOGY
4.1 Dimensionality Reduction
The dataset produced by remote sensing equipment output multi-spectral image stacks comprised
of information from the spectral and electromagnetic range. Therefore, the images from remote
sensing can contain more information in typical images taken in visible light spectrum beyond just
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colour and texture information. The dataset used in this project is taken from the Sentinel-2 satellite
program which produces data across 13 spectral bands to classify a number of crop types, although
the dataset used contains 12 spectral bands. Each image stack or channel can be used for training a
convolutional neural network but the dimensions of all the input features could result in increased
computational complexity. Furthermore, with a high number of dimensions, the amount of data
required to sample the image area would also increase exponentially with the increase in dimensions.
This could result in sparsity, making it difficult for a deep learning model to find patterns and
relationships in the dataset during the training. To lessen this issue, the number of dimensions in the
spectral bands can be reduced though techniques such as feature selection.

4.1.1 Feature Selection
Feature selection is a method in machine learning that involves selecting a subset of the most relevant
and informative features from the original set of features in the dataset. Due to the limited sample
size of the dataset, features selection of the spectral bands is required to reduce the number of input
dimensions. In previous research, Sentinel-2 has been employed for crop classification, with some
studies making use of most of the accessible spectral bands, including up to 9 of them[33]. Due to
the limited number of samples in the dataset, a reduced number of features were picked in order to
mitigate issues caused by over dimensionality. 5 bandwidths (NIR, Red, Green, Blue, SWIR) were
selected from the original feature space.
In addition to the subset of spectral bands selected from the original feature space, a number
of vegetation indices were used to create additional image stacks to be appended to the selected
subset of the bandwidths. From preliminary studies, the most commonly used vegetation indices
are Normalised Difference Vegetation Index (NDVI) and Enhanced Normalised Vegetation Index
(ENDVI) for crop classification. In the early stages of testing, a number of vegetation indices were
trialled but due to overfitting, the number of additional layers were limited therefore NDVI was
selected to be the sole supplementary layer. Figure 8 shows depicts the NDVI layer for a farm area
containing wheat next to an image created using the visible bands.

4.2 Image Augmentation
In order to increase the size and the diversity of the training set, image augmentation can be
performed. Image augmentation is fundamental in computer vision and deep learning and plays a
crucial role in enhancing the performance of machine learning models particularly in medical [34]
and agricultural applications [35]. An example of this is the application of transformations to the
original images to create new training samples. Image augmentation holds significant importance
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Fig. 8. Visible color and NDVI comparison

for multiple reasons. Firstly, it addresses the challenge of dataset size. In many machine learning
applications, having a sizeable and diverse dataset is critical for model training and are crucial
factors that significantly impact the performance of models. larger and more diverse dataset provides
models with a broader range of examples, enabling them to learn more robust and generalised
features. However, collecting such data, rich in real-world variations, can be a challenging and
resource-intensive task [36]. Image augmentation circumvents this issue by artificially expanding
the dataset size through diverse transformations.

Furthermore, image augmentation contributes to improved model accuracy to generalise it across
other similar datasets. By exposing a model to a variety of augmented images during training, it
becomes more capable of generalising its learned features to unseen, real-world data, resulting
in better model performance on test data. Additionally, image augmentation reinforces a model’s
robustness in dealing with variations commonly encountered in real-world scenarios. Real-world
images can vary due to factors like changes in lighting conditions, varying angles, and occlusions
such as cloud coverage. Augmenting the training data with variations that closely resemble these
real-world scenarios equips models to be more resilient and capable of handling such variations
during its application.

Some commonly employed image augmentation techniques include flipping, rotation, scaling, noise
injection, sharpening, translating, cropping and adjusting the contrast[37]. These transformations
introduce diversity into the training dataset, enabling models to learn invariant features and adapt to
the plethora of conditions they may encounter in the real world.

Figure 9 displays the crop type distribution of the dataset used in this study which exhibits a
notable class imbalance. Class imbalance refers to a situation where the distribution of classes within
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Fig. 9. Distribution of Crop Types

a dataset is highly skewed, resulting in one or more classes being significantly underrepresented
compared to others. This is particularly evident in the difference in frequencies between the minority
classes (Root Crops and Oats) and the majority classes. This class imbalance presents an opportunity
to implement data augmentation to reduce the class imbalance. Initially, the meadow instances were
reduced in number, and the labels of minority classes were duplicated until there were a total of
400 instances for each crop type. Additionally, the image stacks underwent random transformations,
including horizontal and vertical flips, rotations, cropping, and the addition of Gaussian noise.

4.3 Deep Learning Model Design
Deep learning has emerged as a powerful tool across various fields, enabling the extraction of
intricate patterns and insights from complex data. Effective model design is at the core of it’s
success and effectiveness, influencing the model’s capacity to capture meaningful information
and to make accurate predictions. Examples of deep learning architectures include Convolutional
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Neural Networks (CNN) and Long Short-term Memory (LSTM). A CNN is commonly used for
tasks related to computer vision and used to solve difficult image-driven pattern recognition tasks
such as image classification[38]. CNNs are designed to automatically and adaptively learn spatial
hierarchies of features from input data, making them effective at capturing visual patterns and
structures and consist of convolutional layers, pooling layers, and fully connected layers. A LSTM
is a type of recurrent neural network (RNN) architecture, designed for sequence prediction and
sequence labeling tasks [39]. By combining the convolutional neural network and long short-term
memory to create CNN LSTM, a model can be designed for sequence predictions in images and
videos. The CNN LSTM model utilises the CNN layers for feature extraction in the spatial domain
the the LSTM layers to extract features in the temporal domain. Figure 10 displays the CNN LSTM
architecture designed for this paper.

Fig. 10. CNN LSTM Architecture

The CNN layers that handle feature extraction in the spatial domain, consists of: convolutional
layers, pooling layers, batch normalisation and ReLU layers.

4.3.1 Convolutional Layer
In the case of figure 10, 3D convolutional layers are utilised. These layers apply a convolutional
operation to the input, then passing the output to the following layer. Each convolution converts all
in pixels in the receptive field into a single value and with each repeated application of the same
filter results in a map of activation’s known as a feature map, indicating the location and strength of
a feature from the input. 3D convolution was applied to the input, the mathematical operation can be
seen in equation 4.
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(
𝑁𝑖,𝐶out 𝑗

)
= bias

(
𝐶out 𝑗

)
+

𝐶in −1∑︁
𝑘=0

weight
(
𝐶out 𝑗

, 𝑘

)
★ input (𝑁𝑖, 𝑘) (4)

In equation 4,
N - Batch Size.
C - Number of images in the image stack / length of data sequence.
D - Dimensions of input. In this case, the number of selected spectral bands used in the input.
H, W - Height and width of the input images, measured by the number of pixels.

3D convolutional is used to capture all the information in the spatial domain. Each image used in
the model consists of 32x32 resolution images of which there are multiple of due to information
being captured in multiple spectral bands.

4.3.2 Pooling Layer
Pooling layers are used in CNNs to reduce the spatial dimensions of the input feature maps while
preserving the depth. The input features map is turned into a set of pooling regions by dividing the
input into non-overlapping regions. The pooling layer then operates on each feature map to create a
new set of pooled features maps. In figure 10, max pooling layers are used in the CNN LSTM model.
Max pooling works on the pooling regions and retains the maximum value within each region while
discarding the rest. This reduces the spatial resolution of the feature maps while preserving the most
important information. The mathematical operation for 3D max pooling is shown below in equation
5.

out
(
𝑁𝑖,𝐶 𝑗 , 𝑑, ℎ,𝑤

)
= max
𝑘=0,...,𝑘𝐷−1

max
𝑚=0,...,𝑘𝐻−1

max
𝑛=0,...,𝑘𝑊−1

input
(
𝑁𝑖,𝐶 𝑗 , stride[0] × 𝑑 + 𝑘, stride[1] [1]ℎ +𝑚, stride [2] ×𝑤 + 𝑛

) (5)

In equation 5,
N - Batch Size.
C - Number of images in the image stack / length of data sequence.
D - Dimensions of input. In this case, the number of selected spectral bands used in the input.
H, W - Height and width of the input images, measured by the number of pixels.

4.3.3 Batch Normalisation
Batch normalisation layers are a technique used in deep neural networks to normalise the inputs to a
layer and are used to stabilise and accelerate the training of models. They work by normalising the
activation’s of a layer by adjusting their mean and standard deviation within mini-batches during
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training. Batch normalisation reduces the internal covariate shift, helping the network converge
faster and enabling the use of higher learning rates. It also acts as a regulariser to reduce the risk of
overfitting.

𝑦 =
𝑥 − E[𝑥]√︁
Var[𝑥] + 𝜖

∗ 𝛾 + 𝛽 (6)

4.3.4 ReLU Layer
A Rectified Linear Unit (ReLU) is a non-linear activation function that is used in multi layer neural
networks and is conventionally used as an activation function for the hidden layers in a deep neural
network [40]. The ReLU activation functions is applied to the output of each neuron in the network
and will introduce non linearity to the model by outputting the input if the value is positive or output
zero if the value is negative resulting in negative values in the filtered image being removed.

4.3.5 Long Short-Term Memory Layer
Long Short-Term Memory layers are a type of recurrent neural network (RNN) layer that is able to
learn long-term dependencies between time steps in a time series and sequence data. LSTMs achieve
this by incorporating memory cells and gating mechanisms. Each LSTM unit contains memory units
which have the ability to store information over a number of time steps which allows the LSTM layer
to capture long-term dependencies in the time series data. The gating mechanisms incorporated in
the LSTM enables the layer to control the flow of information, prevent vanishing gradients, and
make accurate predictions based on sequential input.

4.3.6 Fully Connected Layer
Fully Connected (FC) layers in a neural network are layers where all the inputs from one layer
are connected to all the activation units of the following layer which results in a dense and fully
interconnected architecture. Each neuron in a FC layer applies a linear transformation to the input
vector using a matrix of weights, which as a result, introduces non-linearity to the neural network
allowing the network to model complex, non-linear relationships in the data.

4.4 Classification Strategies
In image classification, various techniques can be employed during the classification stage. Two
prominent approaches are multiclass and binary classification. In multiclass classification, the
primary goal is to assign data samples into multiple classes, ensuring that each sample belongs to

17



one and only one category. On the other hand, binary classification, specifically the One-Versus-All
method, focuses on distinguishing a chosen class as the positive class while considering all other
samples as the negative class.

4.5 Dataset Format
The dataset used is obtained from the Food Security Challenge by AI4EO[41] which covers an area
of land near Brandenburg in Germany with high-quality cadastral data on field boundaries and crop
types as ground truth input. The purpose of the dataset over Germany is to test the reusability of
models for crop identification from one growing season to the next therefore, the dataset spans over
2 years from 2018 to 2019. Due to the revisit time of Sentinel-2, over the 2 years, 144 length time
series of images was collected over the Brandenburg area which contains over 2500 field areas
which are each labelled for the 2018 year. 9 crop types were labelled and can be seen in Figure 11,
however, the labels are only valid for 2018 so that dataset was cut in half to contain just 2018 data or
the first 72 datapoints.

Fig. 11. Crop ID table

When developing machine learning models, it is essential to divide the dataset into training,
validation and testing datasets to train, fine-tune, and evaluate a machine learning model in a
systematic and unbiased manner, ensuring that it can make accurate predictions on new and unseen
data. The training data is comprised of the most significant portion of the original dataset and is used
to to teach the model to recognize patterns and relationships within the input data to associate which
labels correspond with the various crop types in the dataset. The validation dataset is employed
during the model training process to fine-tune hyperparameters, assess model performance, and
prevent overfitting. By evaluating the model on the validation data, necessary adjustments can be
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made to optimise its accuracy. The test dataset is reserved for the final evaluation of the trained model.
It is kept separate from the training and validation datasets to ensure unbiased assessment. After the
model has been trained and validated, it is subjected to the test data to gauge its performance in
real-world scenarios. The results obtained from the test set provide an accurate measure of how well
the model can generalize to new, unseen data.

5 RESULTS AND DISCUSSION
5.1 Image Preprocessing
The dataset used in this study comprised of data spanning two years, 2018 and 2019, and included
crop type labels for each individual field area for 9 types of crop. However, the original intention for
the dataset was to ensure that a model can handle a domain shift to a different year, therefore, only
the labels were only valid for the 2018 remote sensing data [42]. As a result, the image stacks were
trimmed down from 144 images to 72, for the dataset to only contain the images from 2018.
Furthermore, many of the images in the data are affected by the cloud coverage or the shadows,
which both account for half the the images in the stack. An attempt to augment the data was made to
recover non-cloud affected data from the image stacks. Figure 12 displays clouded data of the same
field area displayed in figure 8 but for the following Sentinel-2 revisit.

Fig. 12. Cloud Obscured Field Area

Sentinel-2 remote sensing data includes a cloud mask that measures the levels of cloud coverage
at a 60m resolution. An example of the cloud mask can be seen in Figure 13 which displays the
clouds on a gradient from white to black with the latter representing the cloud on a scale of 0-255.

The effects of the cloud coverage over a certain field can be seen in figure 14.
Figure 14 displays the mean cloud coverage over a randomly selected field area. The values above

200 suggests almost total cloud coverage and the lower values suggests that the field area is partially
covered by clouds. Due to the difference in cloud coverage, different techniques will need to be
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Fig. 13. Sentinel-2 Cloud Mask

Fig. 14. Mean Cloud Coverage

used. For the days with partial coverage spatial interpolation can be implemented and for days with
complete cloud obfuscation temporal interpolation can be utilised. Due to the nature of the data, in
an ideal situation, the spectral data across a field area would be uniform which would also result in
each datapoint being a single value rather than a 32 x 32 image. Therefore, by reducing the data to
just the median pixel value for each pixel a 2D representation of the dataset can be created with the
second dimension being the multiple spectral bands. During this process, spatial interpolation can
be implemented by selected the mean pixel values from areas with minimal or low cloud coverage
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which can be found by analysing the cloud mask. Following the transition to the 2D data structure,
temporal interpolation can be introduced by utilising data from before and after dates with low cloud
coverage to approximate the pixel values. This solution was trialled for the dataset however due to
the high cloud coverage, as show in Figure 14, limited options were given to temporally interpolate
the data which resulted in negligible improvements from the model.

5.2 Image Augmentation
In the data, one of the most significant challenges encountered is class imbalance, as depicted in
Figure 9. This disparity is particularly pronounced in certain classes, where the numbers differ by
an order of magnitude, such as root crops and forage crops. To address this critical issue, multiple
approaches were explored.

5.2.1 Class Weights
Initially, class weights were considered. These weights are determined inversely proportional to
the frequency of each class. This means that underrepresented minority classes receive a greater
weight, while overrepresented majority classes receive a lower weight. However, in the final model,
a resampling technique was chosen.

5.2.2 Resampling
This chosen technique involves both oversampling of minority classes and undersampling of majority
classes. To implement this method and alleviate class imbalance, it’s crucial to select a target number
of samples. Striking the right balance in the number of samples is essential. Excessive computational
cost should be avoided, while ensuring that there are enough samples to retain valuable information,
diversity, and training data for the model.

In this context, it was decided to set the target number of samples at 400 for each crop type.
This choice aims to strike a balance between computational efficiency and the need to preserve
information and diversity within the samples used for training. By resampling in this manner,
the model can better learn from the data, account for class imbalances, and make more accurate
predictions across all crop types.

In addition to mitigating class imbalance, a variety of image transformations were incorporated
into the dataset. These transformations encompassed image rotation, flipping (both horizontally
and vertically), random cropping, and the introduction of random noise. These augmentations
were employed to diversify the dataset and expose the model to a broader spectrum of variations.
Rotation allowed the model to learn from objects at different angles, while flipping simulated
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varying viewpoints and mirror reflections. Random cropping encouraged the model to focus on
different regions within each image, enhancing feature robustness. Crops were reduced to 32x32 pixel
resolution for the mode. Furthermore, the injection of random noise prepared the model to handle
noisy or less-than-ideal input conditions, contributing to its overall adaptability and performance in
real-world scenarios.

Additionally, the dataset required preparation for both binary and multiclass classification tasks.
For the multiclass model, a balanced dataset was created with 400 samples for each crop type.
However, in the binary classification model, a one-versus-all (1 v all) approach was adopted. In this
scheme, for each specific crop type under consideration, the dataset consisted of 400 samples from
that primary crop type, along with 400 crop samples randomly selected from the remaining eight
crop types. This approach facilitates the training of binary classifiers for each individual crop type
against the rest, ensuring that the model can effectively distinguish between the target crop and all
other crops in the classification task.

5.3 Evaluation
This section assesses several models in comparison to the final model, as illustrated in Figure 10.
All models underwent training using the same dataset, employing an early stopping mechanism set
to terminate training after 15 epochs.

(a) Underfitting Confusion Matrix (b) Final Confusion Matrix

Fig. 15. Confusion Matrix Comparison
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Figure 15 provides a visual comparison between two models: one after the application of data
augmentation to mitigate class imbalance (on the left) and the final baseline model (on the right).
The correspondence between each crop ID and its corresponding crop type can be found in Figure
11.

To address the class imbalance, a combination of oversampling and undersampling techniques was
applied, ensuring an equal number of samples for each class within each crop type. However, when
examining the relationship between the class distribution chart in Figure 9 and the confusion matrix
results in Figure 15, it becomes evident that there is a discrepancy. In some cases, underrepresented
classes are predicted more frequently than the majority classes. This discrepancy suggests that the
model might be overfitting the data.

One potential explanation for this phenomenon, especially after oversampling to address class
imbalance, is that there were initially too few samples of the minority classes. Consequently,
even after applying transformations, the resulting samples may remain very similar, leading to an
overemphasis on these classes during training. Further investigation into model complexity and
potential overfitting is warranted to understand and address this issue effectively.

Fig. 16. Improved Model Confusion Matrix

Figure 16 presents the confusion matrix for a model with an increased number of convolutional
layers, aimed at reducing the underfitting observed in Figure 15. The adjustments made to the model
have led to a more balanced distribution of predictions across each class, but certain trends persist,
particularly noticeable in column 9, which pertains to "Forage Crops."
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One potential explanation for this ongoing trend lies in the labeling of the dataset, where similar
crop types have been grouped into a single category. This grouping introduces additional complexity
for the model, as it must learn to distinguish between various subtypes within a broader category. For
instance, in column 9 of Figure 16, the crop type is designated as "Forage Crops," which encompasses
a range of species and crops primarily cultivated for livestock feed. This category includes various
grasses, oats, barley, rye for hay production, and even maize (corn) for silage. The diverse range
of crops within this category can result in some data overlap, as different species share similar
characteristics. Consequently, the model may encounter challenges in accurately distinguishing
between these closely related subtypes, contributing to the observed trends in the confusion matrix.

(a) 3 Convolutional Layers (b) 6 Convolutional Layers + ENDVI

Fig. 17. Convolutional Layer Comparison

To enhance the model’s predictive capabilities and address the challenges in correctly classifying
crop types, an increase in complexity was deemed necessary. This increase in complexity was
achieved by augmenting the number of convolutional layers. Figure 17 illustrates the outcomes of
this complexity enhancement, where two models are presented: one employing 3 convolutional
layers and another utilising 6 layers. Additionally, the rightmost model in the figure incorporates an
ENDVI (Enhanced Normalised Difference Vegetation Index) layer into the image stack.

The model with 3 convolutional layers immediately demonstrates notable improvements compared
to the results depicted in Figure 16. A distinct diagonal line in the confusion matrix becomes evident,
indicating that the improved model is beginning to make correct predictions for crop types. However,
there are still some inaccuracies observed in crops 1, 2, 3, and 9.
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In pursuit of further improvement, the number of convolutional layers was further increased
to 6, and an additional ENDVI layer was introduced into the image stack. However, subsequent
testing revealed that the benefits gained from the additional channel introduced by the ENDVI
layer were marginal over the 5 spectral bands and the NDVI channel. Consequently, to mitigate the
risk of overfitting and reduce dimensionality, the ENDVI layer was removed from the model while
maintaining the enhanced complexity achieved through the 6 convolutional layers.

(a) 1 LSTM (b) 2 LSTM (c) 3 LSTM

Fig. 18. LSTM Layer Comparison

In addition to modifying the number of layers in the Convolutional Neural Network (CNN) to
enhance performance in the spatial domain, adjustments were also made to the number of Long
Short-Term Memory (LSTM) layers to improve performance in the temporal domain. The outcomes
of these adjustments and testing are presented in Figure 18. The train and validation losses for the 1
and 3 layer LSTM model can be seen in Figure 19 and Figure 20 respectively.

(a) Train Losses (b) Valid Losses

Fig. 19. 1 LSTM Losses

Upon examining the losses for Figure 19 and Figure 20, a decision to utilise 2 LSTM layers
was reached. The losses in Figure 19 indicated that the validation losses consistently exceeded
the training losses, suggesting that a single LSTM layer was insufficient for capturing temporal
details and that the model was underfitting. Conversely, Figure 20 displayed signs of overfitting,
with training losses significantly lower than validation losses, and the results degraded, as evident in
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(a) Train Losses (b) Valid Losses

Fig. 20. 3 LSTM Losses

the confusion matrix in Figure 18. Moreover, employing 3 LSTM layers increased computational
costs. Therefore, in pursuit of the best model, it was determined that 2 LSTM layers strike an
optimal balance, effectively capturing temporal patterns without introducing excessive complexity
and computational demands. In the end, the multiclass model was designed with six convolutional
layers, each incorporating batch normalisation and ReLU activation functions, with a max pooling
layer alternating for every other convolutional layer. These architectural choices contributed to the
model’s overall performance and ability to distinguish between various crop types.

(a) Baseline model - Confusion Matrix (b) Crop ID table

Fig. 21. Final Baseline Model

In the final multiclass model, an accuracy of approximately 0.79 was attained. The performance
results are illustrated in the confusion matrix provided in Figure 21, and the corresponding mapping
between crop IDs and crop types can be found on the right. Addtionally, the losses for the baseline
model can be seen below in Figure 22.
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(a) Training loss (b) Validation loss

Fig. 22. Final Baseline Model losses

Figure 21 reveals varying degrees of success for each crop type. Notably, there are challenges in
correctly classifying crop types 1 (Wheat), 8 (Meadows), and 9 (Forage Crops), with lower success
rates observed. Conversely, crop types 4 (Oat), 5 (Corn/Maize), and 6 (Oil) exhibit higher levels of
successful classification.

In summary, while the model’s performance has shown promise with an accuracy of approximately
0.79, it is evident that further enhancements are required to make it reliably applicable for real-world
scenarios. An alternative approach under consideration is the implementation of binary classification.
As observed in Figure 21, the baseline model exhibits varying levels of success in predicting different
crop types. To address this, a one-versus-all binary classification model can be employed to classify
each crop type individually, potentially leading to improved results.

To adapt the model for binary classification, adjustments to the dataset are necessary. In the
baseline model, a dataset containing 400 samples of each crop type was used throughout training,
validation, and testing. However, for training the one-versus-all model, the number of samples for
each crop type must be modified to ensure an equal number of samples for the target crop type and
an equal number of samples from all other crops, randomly selected from those not belonging to the
target crop type. This approach aims to balance the dataset and enable more focused and effective
binary classification for each crop type of interest. This is achieved by altering the label data to
delete crops that are not needed for the classification and by changing the crop ID of the targeted
crop to 1 and the other crops to -1, a confusion matrix can be created.

Figures 23, 24, and 25 present the confusion matrices for each of the crop types, and the
corresponding accuracies for each crop type are depicted in Figure 26. Upon careful examination,
it becomes evident that the accuracies achieved for each crop type are comparable to the results
obtained from the baseline model as shown in Figure 21.

However, the key advantage of the one-versus-all (1vAll) approach is its ability to target specific
crop types individually, resulting in more accurate classifications for selected crops. This finer
granularity of classification enables the model to excel in distinguishing certain crop types, which
might have been challenging in a multiclass classification setting. The approach empowers tailored
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(a) Barley (b) Corn (c) Forage Crops

Fig. 23. One versus All comparison 1

(a) Meadow (b) Oat (c) Oilseed

Fig. 24. One versus All comparison 2

(a) Root Crops (b) Rye (c) Wheat

Fig. 25. One versus All comparison 3

solutions for each crop type, enhancing overall classification performance and addressing the specific
needs of different crops in the agricultural context.
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Fig. 26. One versus All results

5.4 Variable Time Series Length
One of the primary objectives of this project is to enable the classification of crops before the entire
sowing and harvest cycle is completed. In the current baseline model, crop data from the entire year
of 2018 has been utilised for training. However, for the initial trial of the one-versus-all models, it is
essential to explore the impact of varying time frames. Understanding the estimated time frames for
the sowing and harvesting of each crop is crucial for this purpose.

Fig. 27. Crop Harvest Timetable

Figure 27 provides valuable insights into the crop harvest timetable for Germany, as sourced from
[43]. Specifically, it highlights the harvest periods for maize (corn) and rapeseed/canola (oilseed).
Using this data, we can determine the relevant time frames required for crop classification. Corn
and oilseed were specifically selected from the pool of nine crop classes in the baseline model.
This selection was made taking into account the number of unique samples available for each crop
class before data augmentation. In the initial dataset, certain crop classes, such as root crops, had a
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relatively limited number of unique samples, approximately around 20. Consequently, when working
with such imbalanced data, the model’s accuracy might be misleadingly high, often reaching levels
as high as 0.98 or more. However, this high accuracy can be attributed to the class imbalance rather
than the model’s true generalisation performance. To ensure a more accurate evaluation of the
model’s capabilities, the decision was made to focus on corn and oilseed as target classes. These crop
classes were chosen because they offered a more balanced number of unique samples, allowing for a
more reliable assessment of the model’s performance. Analysing Figure 27, we can ascertain that
corn is typically harvested around the 273rd day of the year, while oilseed harvesting occurs around
the 212th day. Given the 5-day revisit time of Sentinel-2, which results in approximately 73 data
points per year, we can optimise the dataset by retaining only the pertinent data points. This entails
narrowing down the data to approximately 55 data points for corn and 43 data points for oilseed,
focusing specifically on the relevant harvest periods for each crop. This tailored approach allows us
to align the data with the critical phases of each crop’s growth cycle, enhancing the precision and
timeliness of crop classification.

(a) Corn Time Series (b) Oil Time Series

Fig. 28. Corn and Oil Variable Time Series Length

The data presented in Figure 28 illustrates some initial testing involving the manipulation of time
series lengths. In this experimentation, the initial step was to shorten the length of the time series by
removing the end section, retaining only the data within the growth period of interest. However,
it’s important to note that the model in use requires a fixed-length time series as input. To address
this requirement, an arbitrary approach was employed, involving the repetition of the final image
of the image stack until the time series reached a length of 72. While this approach provides a
fixed-length input, it comes with certain limitations. Specifically, altering the ends of the time series
in this manner can lead to inaccuracies in crop classification. This is because the model continues to
explore features beyond the chosen end of the sequence, potentially introducing inconsistencies and
misclassifications. The results presented in Figure 28 reveal a clear descending trend as the length of
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the time series decreases. This trend is indicative of the sensitivity of the model to the length of the
input time series.Notably, the accuracy of crop classification for corn and oil, which initially stood at
0.94 and 0.89, respectively, in the baseline tests, experiences a significant drop when the time series
is trimmed down to cover only the specific growing periods of these crops. Specifically, the accuracy
decreases to approximately 0.8 for corn and approximately 0.6 for oil. These findings underscore the
importance of considering the temporal context in crop classification tasks. It demonstrates that
the model’s ability to accurately classify crops relies heavily on having access to a sufficient and
relevant historical context within the time series data. Reducing the length of the time series to
only include the growth periods of the crops, without using a different model, can lead to a loss
of critical information and, consequently, a decrease in classification performance. This highlights
the necessity of aligning the model’s input data with the relevant temporal context for reliable crop
classification results. Another approach was to train a new model targeted at classifying individual
crops at certain periods throughout the year. Corn was chosen for this model as it represents a
greater portion of the dataset at 55 revisists before harvest compared to 43 datapoints for oilseed. A
new model was trained at 5 datapoint intervals, which corresponds to 25 day gaps, beginning from
datapoint 55.

(a) Time Series Length (b) Results Table

Fig. 29. Corn Variable Time Series Length

As illustrated in Figure 29, notable improvements are evident when compared to the results shown
in Figure 28. The model’s performance starts with a higher accuracy of 0.9 compared to the previous
0.8. Furthermore, the accuracy in Figure 29 remains relatively consistent, with results consistently
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above 0.8 until the end of the testing period. Toward the end, the results exhibit a rapid decline due
to the absence of clean data caused by high cloud coverage during the early part of the year.

It is evident that training a specialized model designed for classifying individual crops during
specific growth periods throughout the year yields promising results. However, it’s important to
note that the dataset used in this study lacks data from the earlier stages of corn growth, which
could potentially lead to even higher accuracy and more stable results, particularly during the
cloud-covered winter period. All the results can be found under temp_s2 file in the code.

6 CONCLUSION
This study proposes a deep learning model able to classify crop types from farm areas by exploiting
the information in the spatial and temporal domain. The dataset used to train the model uses
Sentinel-2 remote sensing data over a region near Brandenburg containing over 2500 field areas.
This data is collected across 12 spectral bands from the beginning of 2018 to the of of 2019. The
proposed deep learning model utilised information from the spatial and temporal domain using a
CNN LSTM architecture to initially perform multiclass classification but was found to perform
different depending on the crop type. As a result, a switch from multiclass to binary classification
was made to design a model targeted at classifying specific crops to ensure the greatest accuracy.
The results from these models demonstrated the limitations of the dataset, for example, the grouping
of subspecies of multiple crop types into a single group such as forage crops and root crops. Another
limitation of dataset class imbalance which resulted in an order of magnitude of difference between
the majority and minority class which was solved by undersampling and oversampling. Finally,
some tests of varying the length of the time series was experimented on where it was found to
perform well by training a new model targeted at classifying a specific crop through set time periods
through the year. The greatest limitation of the experiment is the lack of data from the earlier stages
of growth due to the dataset beginning at the start of 2018 but the planting period begins around
September 2017. With the data from the previous year, I believe the average accuracy will be greater
and the decline in accuracy when only including the start of the time series will not be as present.
Additionally, all the data used to create the deep learning model utilised dataset from Brandenburg
so it is likely that this model will only provide good results in regions areas.
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